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Synthesis of Distributed Elliptic-Function Filtets from
Lumped-Constant Prototypes

R. LEVY, SENIOR MEMBER, IEEE, AND I. WHITELEY, STUDENT MEMBER, IEEE

Abstract—A synthesis procedure for distributed elliptic-func-
tion filters utilizing published tables of lumped-constant elliptic-
function filters has been devised. It is dependent upon the application
of a new generalized transformation for distributed networks. The
filters often require the realization of distributed Brune sections, and
several novel practical realizations are given both for general and
degenerate Brune (i.e., Foster) sections. Examples are given of ellip-
tic function stop band and pass band filters having both wide and
narrow bandwidths, and experimental results show good agreement
with theory.

I. INTRODUCTION

HE FILTERS described in this paper are based
Ton the elliptic-function or Cauer-parameter
lumped-element prototype [1], [2]. A typical
insertion loss vs. frequency characteristic for a low-pass
prototype is shown in Fig. 1, which represents a filter
having two transmission zeros at finite frequencies, and
one atw= . The ripple level in the pass band is 4, dB,
and the minimum stop band attenuation is Ag dB,
where the pass band edge is normalized to w=1 and the
stop band edge is at w =w,. The main advantage of this
type of characteristic is that the cutoff slope, which may
be defined as
As— 4
SdB = —S‘—?‘; (1)

ws — 1

may be made very large with a reasonably small number
of circuit elements. This may be contrasted with Butter-
worth or Chebyshev filters, where very often a rather
large number of circuit elements are required. A second
advantage, of considerable practical importance, is that
extensive design tables for elliptic-function filters are
available [2].

Although elliptic-function filters have been developed
and are employed extensively at low {requencies using
lumped components, there has been little application of
the technique in the microwave band, using distributed
circuit elements. Ozaki and Ishii [3] made an early
reference to a design procedure but their method con-
sists of a direct synthesis from the network function, and
appears to be quite complicated. An interesting proce-
dure based on coupled transmission lines was introduced
by Saito [4]. It is subject to limitations due to extreme
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impedance levels. A method (which also suffers from
restrictions) similar to that described in Section VI of
the present paper has been published independently by
Blanc and Soldi [5], and a very compact design for
broadband elliptic-function filters has been given by
Horton and Wenzel [6]. A multiharmonic rejection
filter designed from an elliptic-function prototype has
been described by Schiffman [7], but is limited to proto-
types having not more than one transmission zero at a
finite frequency. A more empirical approach to obtain-
ing high rates of cutoff at the band edges has also been
described by Torgow and Lubell [8].

Although direct synthesis of distributed elliptic-
function filters is certainly possible [3], a great deal of
work is involved in the preparation of suitable computer
programs. As an alternative it was decided to take ad-
vantage of the considerable effort which has led to the
publication of comprehensive tables for lumped-element
elliptic-function filters [2]. The distributed filters de-
scribed in this paper use the low-pass prototypes of
these tables.

II. LuMPED TO DISTRIBUTED TRANSFORMATIONS

The extension of network synthesis to distributed
networks was demonstrated by P. I. Richards in 1948
[9]. It was shown that distributed networks composed
of lumped resistors and equal length or commensurate
lossless transmission lines (i.e., lines of an integral mul-
tiple of a given electrical length) can be treated by
methods similar to those for lumped networks by using a
transformation from the complex frequency variable s to
a new complex variable

Is
t = tanh — 2)
¢

where [ is the free-space length of the basic transmission
line element, and ¢ is the velocity of EM waves. As pre-
sented, (2) applies to TEM transmission lines, but a
similar transformation may be used in the case of wave-
guide circuits.

The mapping of the s-plane on to the t-plane is not
one to one, but is periodic, corresponding to the periodic
nature of the impedance function of the distributed
network. The imaginary (jQ) axis of the t-plane is related
to the imaginary axis (real frequency axis) of the s-plane
by the equation

Q = tan ¢ 3)
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where ¢ is the basic electrical length of the commensu-
rate transmission lines. When the lumped network hav-
ing the characteristic shown in Fig. 1 is transformed into
a distributed network by Richards’ transformation, the
real-frequency behavior of the resulting network is
shown in Fig. 2. In practice, this transformation is car-
ried out by replacing the reactive lumped elements of
the prototype by suitable transmission line stubs. Thus,
an inductance of reactance L'w, at a frequency wg is
replaced by a short-circuited stub of input reactance
Z' tan ¢, and a capacitance of susceptance C’wy is re-
placed by an open-circuited stub of input susceptance
Y’ tan ¢o. ¢o may be chosen arbitrarily, and in the ex-
ample illustrated by Figs. 1 and 2 corresponds to the
band edge of the low-pass filter. The choice of ¢¢ controls
the ratio of the cutoff frequencies of the second and first
pass bands (r—d¢o)/de, but too small a value of ¢¢ may
lead to extreme values for the characteristic immittances
Z’, Y’ of the stubs.

In the transformed distributed network all the stubs
are located at the same physical point, and as yet there
is no provision for separation of the stubs by lengths of
transmission line for ease of manufacture, and indeed,
for physical realizability in the practical sense. Such a

"T-¢o ™ T+ Pg
ELECTRICAL LENGTH

Attenuation characteristic of a distributed-element elliptic-function filter.

transmission line cascaded between two filter elements
has the basic commensurate electrical length, and is
termed a unit elemeni. One of the main problems in the
distributed filter design technique described in this
paper is to introduce unit elements into the network
without altering the insertion loss characteristic.

III. GENERALIZED KURODA TRANSFORMATIONS

A method of stub separation which is used [requently
in the case of certain restricted classes of ladder networks
is the application of Kuroda’s transformations [3], [10].
These establish an exact equivalence between a unit
element in cascade with a series or shunt open- or short-
circuited stub on the one hand, and the reversed cascade
consisting of a stub followed by a unit element on the
other. Since it is possible to incorporate any number of
unit elements at either port of the ladder network, each
of characteristic impedance equal to the terminating
resistance at the respective ports without altering the
insertion loss, then it is possible to transform these unit
elements into the network by successive applications of
the Kuroda transformation in such a way as to separate
the stubs. This method is restrictive in that the simple
Kuroda transformations apply only to single stubs,
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equivalent to a series or shunt capacitor or inductor of
the lumped element prototype. However, it has now
been shown [11] that the simple Kuroda transforma-
tions are special cases of a more general transformation,
depicted in Fig. 3, and which may be stated as the fol-
lowing theorem:

A distributed network consisting of a unit element in cascade
with a physically realizable two-port may always be replaced

, by an equivalent circuit consisting of a physically realizable
two-port in cascade with a unit element.

Thus, if the network N of Fig. 3 is defined by its trans-
fer (or chain) matrix
B (t)}
D()

I:A(t)
c@)
where ¢ is defined in (2), then in the equivalent circuit
the network N’ has the transfer matrix

)

B DZ
A-}—CZt—Z;t—— P £

1—-2 4 D Bi?

CH+—t—=t——

Z A VA

and the unit element Z’ is given by
B(1) + ZD(Q1
,_ B+ 2D0) o

A1) + ZC(1)

The reader is referred to the original paper [11] for the
proof of (5) and (6).

In the application of this generalized transformation
to elliptic-function filters, it is frequently necessary to
transform a unit element across a distributed series
resonant circuit in shunt (i.e., a shunt Foster), as shown
in Fig. 4(a). The result of the transformation is a micro-
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wave Brune section in cascade with a unit element
[5], [11], as shown in Fig. 4(b).! The parameters of the
Brune section are given in Fig. 4, using the notation of
Youla [12].

If a further transformation of a unit element is re-
quired, this will be across the microwave Brune section,

—AZ't — CZZ't* + B+ DZt
Z/ (5)

B
—CZlt——— £+ D+

which is again accomplished by means of the generalized
transformation. It is easy to show that the transforma-
tion of a unit element across a Brune section results in
another Brune section, as shown in Fig. 5. It is evident
that this depicts a more general case than that shown in
Fig. 4, where the shunt Foster of Fig. 4(a) is to be re-
garded as a degenerate Brune section. The equations in
Fig. 4 may be derived from those of Fig. 5 by substitut-

1 This particular transformation was first formulated by Kuroda,
but published only in an internal report of a Japanese university.
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ing the conditions for degeneracy, i.e., that
L,=L,= M. (7

In applying the generalized transformation to the
Brune section the resulting Brune section is frequently
degenerate, i.e., the reverse of Fig. 4 may occur. How-
ever, if the condition

L,= M(CZ + 1) (8)

occurs, then inspection of the equations in Fig. 5§ shows
that C’—0, while 3/’, L,/, and L,/— » in such a way
that the product A/’C’ = MC. This is because the Brune
section degenerates not to a shunt Foster but to a series
Foster, as shown in Fig. 6, where the equations to be
applied in this case are presented.

IV. REALIZATIONS OF MICROWAVE
BRUNE SECTIONS

A considerable amount of work on the physical reali-
zation of microwave C, Brune, and D sections has been
accomplished by several workers in Japan [13], [16].
Only Brune sections are required in the realization of
elliptic-function filters, since the latter has only real-
frequency transmission zeros [12]. At present, no reali-
zation exists for the microwave Brune section alone, but
there are several realizations for the microwave Brune
section in cascade with a unit element, i.e., for the net-
work of Fig. 4(b). The earliest such realization appears to
be the Ikeno loop [13], which is shown in Fig. 7. How-
ever, this is restricted to the cases where,

Ly > Ly, (or M > L,) (9)
Z>M— L, (10)

Even when these conditions are satisfied, it may not be
possible to construct the loop consisting of four sections
of differing impedances because of impossible impedance
levels.

A realization which may be more suitable than that of
Ikeno was given by Saito [14], as shown in Fig. 8.
Again, the impedance levels are likely to be awkward in
many instances, and the restrictive conditions which
apply are identical to those of the Ikeno loop, [(9), (10)].

The restrictions on the physical realization of Brune
sections, as given by (9) and (10), were released to some
extent by Matsumoto [14], who has given six types of
realizations using three-wire lines. The formulas given
by Matsumoto contain minor errors, which have been
corrected by Rhodes and Scanlan [17]. In fact, it is not
possible to realize a Brune section in cascade with a unit
element of arbitrary impedance by a choice of one of
Matsumoto’s configurations. In practice it is found that
some of his networks are difficult to construct, while the
three-wire configuration is difficult to calculate as far as
the self- and mutual-capacitance values of the wires are
concerned. It has been found more convenient, there-
fore, to use new physical realizations as described by
Rhodes, Scanlan, and Levy [18].

The first of these to be discovered was the series
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where the even and odd mode impedances are given in terms of the
self and mutual capacitances of the coupled bars by the equations.

g0 = Co T 2 Zoe= S0
oF oF
gp = Ceh 20w Y
oF oF
F= Ca + Cab —Cab
—Cap Co + Capl

realization, shown in Fig. 9. The case with short-
circuited stubs, Fig. 9(a), applies for M >L,, and has
restrictive conditons identical to those of the lkeno
loop or the Saito section. With open-circuited stubs,
Fig. 9(b), cases for which M <L, may be realized, sub-
ject to a restrictive condition on Z, which may not be
larger than (L,— M)/ MC. These series realizations were
derived by forming the impedance matrix of the unit
element/Brune section cascade, extracting the series line
Z by one of two possible methods, and then synthesizing
the remaining Z matrix to give the Pi network formed by
Zs, Z3, and Z,. 1t will be found that the circuits of Fig. 9
are particularly useful for filters with broad bandwidths
where tight coupling of the Pi network to the series line
is required. However, in cases of narrow bandwidths, the
impedances Z, and Z, take extreme values. A more
useful realization then is to use coupled bars and stubs,
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Fig. 10. Parallel-coupled line realization of a unit element/Brune section cascade.

as shown in the two circuits of Fig. 10. Originally these
were derived independently by analysis, but it is readily
shown that the series circuits of Fig. 9 are special cases
of those of Fig. 10. Thus Fig. 9(a) is derived by making
the following substitution for Z, in Fig. 10(a):

MCZ+ M — L,
L(CZ + 1)

(11)
Similarly, Fig. 10(b) reduces to Fig. 9(b) with the

substitution

L= @+ L, - M)
Ly

Zy

(12)

From the restrictive conditions on Z it may appear
that these coupled-line circuits are of limited use. How-
ever, in practice the restrictions are not serious, since
Scanlan and Rhodes [17] have shown that, given a

prescribed physically realizable driving point impedance
with transmission zeros all at real frequencies, it is al-
ways possible to find a physical realization consisting of
a cascade of unit elements and Brune sections satisfying
these restrictions (which appear to be basic). Thus, in a
synthesis procedure it may not be possible 10 extract a
Brune section at some stages, but by first extracting one
or more unit elements the eventual extraction of the
Brune section for the particular transmission zero is
guaranteed. In practice it is rarely necessary to extract
more than one or two unit elements before the Brune
section may be realized.

Examples showing how these unit element/Brune
section structures are used in the design of elliptic-
function microwave filters will now be given. The most
important requirement is that the impedances of all
lines within the filters have values which can be readily
made in practice, i.e., lying in the range 10Q to 200Q. In
this context it should be noted that physical realiza-
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bility criteria in the strict circuit theory sense are not
sufficient for actual practical realizations because they
do not exclude structures with impossible impedance
levels.

V. ExaMPLES OF ELLIPTIC-FUNCTION MICROWAVE
FiLTter DEsioN UsiNG BRUNE SECTIONS

A. Band-Stop Filter from Single-Pole Prototype Having
Approximately 6 Percent Bandwidth

The low-pass prototype taken from Saal’s tables [2] is
type number CO4 15¢ for a modular angle #=31°, hav-
ing a low-pass ripple level corresponding to a reflection
coefficient of 0.15, and a minimum stop band attenua-
tion of 40.2 dB, as shown in Fig. 11(a), the prototype
circuit being shown in Fig. 11(b). If Richards’ transfor-
mation is applied directly to a low-pass prototype, then
the resulting distributed filter is of band-stop character,
with the stop bands repeating at harmonic frequencies.
However if a narrow stop bandwidth is required, then it
has been found necessary to transform the low-pass
prototype into a lumped-element band-stop filter before
applying Richards’ transformation. This prevents the
occurrence of lines with extreme values of impedance.
The characteristic of the band-stop filter is shown in
Fig. 11(c), and the circuit is shown in Fig. 11(d), having
applied the frequency transformation

1
w >
(-2)

6 —

w

where
5 = T w \/@__
‘ Vwiws w | (13)

w1, wy being the band-stop edge frequencies shown in
Fig. 11(c) and, in the present instance, §=0.1. It will be
noted that the band-stop filter is a cascade of shunt and
series Foster sections, i.e., of degenerate Brune sections.
When Richards’ transformation is applied to this
lumped-element filter, taking the electrical length at the
center of the stop band as ¢o=45°, [Fig. 11(e)], it is
seen that the stop bandwidth of the first harmonic stop
band, defined to the pass band ripple level is slightly
greater than 6 percent. It is now necessary to transform
unit elements from source and load ends of the filter to
give a practical realization. The fact that the filter con-
sists of a cascade of degenerate Brune sections facilitates
this process. The distributed circuit resulting when one
unit element is transformed from the left-hand side and
two unit elements from the right-hand side of Fig. 11(d)
are shown in Fig. 11(f). The transformations depicted in
Figs. 4 and 6 are used in this example. The realization in
the coupled-line form with stubs is shown in Fig. 11(g),
which is obtained from Fig. 11(f) using the equivalence
of Fig. 10(a), and also the equivalence of Fig. 12, which
is used to realize the series Foster/unit element combi-
nation at the right-hand end of the network. Note that
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unit elements of value Zy=1 external to the filter at
both source and load ends were used in the transforma-
tions. The normalized impedances of all stubs lie in the
range 0.896 to 1.09, the impedances of the coupled lines
are also approximately unity, and the coupling coeffi-
cients of the parallel-coupled line sections are easily
realizable. This filter is illustrated in Fig. 13, and the
measured response in Fig. 14.

Using this technique of resonating the prototype
filter, stop band filters for any bandwidth from 0.1 per-
cent or Jess to 100 percent may be realized (Section VII).

B. An Octave-Bandwidth Band-Pass Filter Derived From
a Double-FPole Prototype

The low-pass prototype is shown in Fig. 15(a), and
has the response given in Fig. 15(b). In order to form a
band-pass response in the distributed case, this must be
converted to a high-pass structure, and to give a band-
width of one octave, it is necessary to arrange the cutoff
frequency to occur at an electrical length ¢o=60°. The
transformation to be applied to Fig. 15(a) is thus

tan ¢0
¢

(14)

s =

which gives the pseudo high-pass circuit of Fig. 15(c) in
the ¢t-variable. The response in the distributed domain is
an octave bandwidth band-pass filter with harmonics, as
shown in Fig. 15(d).

A convenient way to apply the general transformation
to a case of this type is to combine the three shunt in-
ductors using the transformation shown in Fig. 16. This
gives an exact equivalent of a shunt Foster in cascade
with an inductance and an inductance in cascade with a
Brune section. This is a degenerate case of the inter-
change of a Brune section with a shunt inductance,
shown in Fig. 17, which may be of use in some cases.
When the result of Fig. 16 is applied to the circuit of
Fig. 15(c), Fig. 15(e) results. Unit elements must now be
transferred into the network across the Brune sections,
and the result of transferring one unit element from the
left and two from the right is given in Fig. 15(f). Itis
necessary to transform two unit elements over the right-
hand Brune section because it is not possible to realize
the Brune section in cascade with a unit element at the
right (having Z=1) after only one transfer. The next
problem is to eliminate the ideal transformer at the left,
and to obtain realizable impedances. This is achieved by
dividing the inductance in a suitable optimum way, and
transforming the various component parts across the
available unit elements. A convenient way of carrying
out this process is by use of the capacitance matrix
transformation described by Wenzel [19] which is
simpler than the repeated application of the Kuroda
identities, particularly when several unit elements are
involved. One result of this process is given by the cir-
cuit of Fig. 15(g). This could be realized in practice with
some difficulty; the difficulty arising because the induc-
tance of value 0.1958 is rather low. To elirninate this
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difficulty it was decided to introduce a certain degree of
redundancy by transforming two additional unit ele-
ments across the left-hand Brune section. When the
inductances had been redistributed the network of
Fig. 15(h) resulted, which may be realized very easily as
shown in Fig. 15(i). Note that the parallel-coupled line,
section one, may be realized conveniently using the
re-entrant line technique described by Cohn [20]. The
values of w/b and s/b for the interdigital section three
are derived using Wenzel’s results [19], the configura-
tion used being rectangular coupled bars which are
treated accurately by Getsinger [21].

The final configuration is somewhat bulky and incon-
venient, and with further development might eventually
be realized in more compact form, e.g., as an interdigital
filter with stubs. Alternatively, the method of Horton
and Wenzel [6], which is limited to broadband filters,
would give a compact structure in the present instance.

VI. ALTERNATIVE PROCEDURE USING THE
P1-EQUIVALENT OF A BRUNE-SECTION

As an alternative to the direct realization of the dis-
tributed section, it is occasionally possible to convert the
Brune section into its Pi equivalent shown in Fig. 18,
which consists of a series Foster and two shunt capaci-
tors, one of the latter being negative. The negative
capacitor may often be absorbed into an adjacent shunt
capacitor of greater value.

As an example, a distributed pseudo low-pass filter
with a stop band attenuation 4, of greater than 27.1 dB
was designed. This rather low value of attenuation was
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chosen to simplify measurements on the filter. (A filter
with 4,>60 dB was also designed, and achieved the
predicted rate of cutoff, but it was more difficult to
establish the maxima and minima of stop band attenua-
tion in this case.) The pass band ripple reflection coeffi-
cient was 0.20. The low-pass prototype is shown in Fig.
19(a), with the response characteristic of Fig. 19(b). The
low-pass cutoff frequency for the distributed filter is
shown at an electrical length ¢o=41°, giving the charac-
teristic shown in Fig. 19(c). Fig. 19(d) indicates the
transformation of a unit element into the center of the
filter, and the signs of the resulting shunt capacitors are
indicated. Elimination of the negative capacitor C, is
possible if Cy is of greater magnitude, which is true for
the prototype and cutoff electrical length ¢, chosen. (It
is usually true if the value of ¢ is chosen to be near 45°).
This process is repeated until five unit elements have
been transformed, giving the circuit of Fig. 19(e). Note
that the admittance of the first shunt stub is extremely
low and, in practice, may be disregarded.

The physical realization using slab-line [22] is shown
in Fig. 20, where the shunt Fosters are realized directly
using the equivalence given in Fig. 21. The comparison
between theory and experiment is shown in Fig. 22. No
attempt was made to allow for fringing capacitances at
the ends of the open-circuit stubs and no tuning was
attempted, so that the results may be considered quite
encouraging.

VII. BANDWIDTH LIMITATIONS OF THE
VARIOUS FILTER DESIGNS

Investigations of the range of bandwidths which
result in realizable filter designs have been carried out
for some cases using a computer, and the results are
presented in Table I. This shows that band-stop filters
of the single-pole type are realizable over a wide range,
and double-pole filters over a more restricted range of
bandwidths. Note that Table I does not present a com-
plete picture even for these cases since it considers only
particular forms of realization, i.e., with only the cou-
pled bar type of unit element/Brune sections, and with a
specified number of unit elements. By considering other
Brune section realizations and by introduction of fur-
ther unit elements, it is often possible to extend the
range of realizable bandwidths. In fact, it would be
difficult to present a complete picture because of the
large number of circuits which exist.

Results are not yet available for band-pass filters of
the type presented in Section V-B. However, it appears
that the method described in that section, i.e., using an
unresonated prototype, is suitable only for broadband
filters for which, as stated previously, the method of
Horton and Wenzel [6] is possibly more appropriate. It
is expected that filters based on a resonated prototype
would be realizable for narrow bandwidths as in the case
of band-stop filters.

The double-pole resonated band-stop filter design of
Table I, i.e., case (b), requires application of an ap-
proximation to a nearly degenerate Brune section. This



1966 LEVY AND WHITELEY: SYNTHESIS OF DISTRIBUTED ELLIPTIC-FUNCTION FILTERS

515
2
(tp-M)
Lp
M
. PO
Ls 5(_5 = Me J: Lo LpC
_I_: M-Tp ] (Lp-M)2 T Lp-M

©

Fig. 18. Pi equivalent of a Brune section.
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Measured and computed attenuation characteristic of filter of Fig. 20,

REeAL1zZABLE BAND-STOP FiLTERS WiTH COoUPLED-BAR TvyPE BrUNE SECTIONS (FIG. 10)
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Stop-band Pass-band . . Range of
Type attenuation reflection Approximations required Range vatilmpiganﬁclis ozsczur- bandwidths
level, 4, (dB) | coefficient, p ring within the filter () realizable
(a) Single-pole resonated
prototype band-stop. 30-75 0.01-0.25 None 12-150 0-1009,
See Fig. 11.
75 0.01 Nearly-degenerate  Brune 0-159;
(b) Double-pole resonated sections with one very low
prototype band-stop— 30 0.01 impedance stub occur, and | Always approximately 50 0-5%
similar to Fig. 11 but are approximated by de-
having seven sections in 60 0.15 generate sections as de- 0-69%
cascade. scribed in the text. —
30 0.15 0-1%
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applies when (8) is very nearly satisfied, i.e., when
(Lp—M—AMCZ,) is positive but near zero. The stub
impedance Z; of Fig. 10(b) is then very low, so that the
Brune section is nearly degenerate and may be approxi-
mated by the realization shown in Fig. 12. In the exact
Brune section M, L,, and L, are large and have values
which are approximately equal, and C is small. 3/C has
a value close to unity, i.e.,

MC =~ L,C ~ LC~1. (15)
The transfer matrix of a Brune section is
L — 2
!_1 + L,CP (L lﬂ
» J . (16)
14+ MCs |.Ct 1+ LCe

In the nearly degenerate case this may be well-approxi-
mated by the matrix

1 |:1 + L'C'e Lt } an
14 L'C's 0 14+ Lc'e
where
. (L, — M)?
L, (18)
L'C'=MC

giving a transmission zero at the same frequency. Ma-
trix (17) is realized by the degenerate Brune section of
Fig. 12,

VIII. CONCLUSIONS

Previously, most designs for microwave filters have
been based on Butterworth or Chebyshev insertion loss
functions. It has been shown how to design microwave
filters with elliptic-function response, which has an
advantage of giving poles of attenuation near the cutoff
frequencies, and hence faster rates of cutoff than Cheby-
shev filters of equal degree and equal band-pass inser-
tion loss. The design procedure commences from a
lumped-constant prototype filter for which comprehen-
sive tables of element values have been previously
published [2]. This is standard practice in many exist-
ing microwave filter design methods. A generalization
of the well-known Kuroda's identities is used to intro-
duce unit elements (lengths of transmission-line in cas-
cade) into the filter in order to separate the various
stubs and other elements of the filter.

Tn general, it is found that distributed forms of the
Brune section are required in order to realize the filters,
and several such realizations have been presented. It
has been shown that practical configurations result for
both narrow and broadband filters of pseudo low-pass
or pseudo high-pass character.
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Reasonably good agreement with theory has been
obtained for practical filters. In addition to the special
case of elliptic function types, the method would be
applicable to general filter characteristics.
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